A beginner friendly introduction to Chebyshev Propagator
These notes give a step-by-step derivation of the Chebyshev (polynomial) propagator for computing $|\psi(t)\rangle = e^{-i\hat{H}t}|\psi(0)\rangle$ without diagonalizing $\hat{H}$. We develop Chebyshev polynomials, explain why one rescales the Hamiltonian spectrum to $[-1,1]$, derive the scalar Chebyshev expansion of $e^{-i\tau x}$ using Fourier cosine series and Bessel functions, lift it to an operator identity, derive the stable three-term recurrence algorithm, prove a truncation error bound, and work two explicit $2\times 2$ examples.
1. When is a Chebyshev propagator needed?
1.1 Time evolution as an operator exponential
In quantum mechanics (setting $\hbar = 1$), a time-independent Hamiltonian $\hat{H}$ generates dynamics via the Schrödinger equation
\[ i\frac{d}{dt}\,|\psi(t)\rangle = \hat{H}\,|\psi(t)\rangle. \tag{1} \]The formal solution is
\[ |\psi(t)\rangle = e^{-i\hat{H}t}|\psi(0)\rangle. \tag{2} \]Thus, the central computational task is:
Task: Given $\hat{H}$ and $|\psi(0)\rangle$, compute $|\psi(t)\rangle = e^{-i\hat{H}t}|\psi(0)\rangle$.
1.2 Why we do not want to diagonalize
If the Hilbert space dimension is large, diagonalizing $\hat{H}$ or forming the dense matrix $e^{-i\hat{H}t}$ is impractical. However, we only need the action of the propagator on a vector:
\[ |\psi(t)\rangle = \big(e^{-i\hat{H}t}\big)\,|\psi(0)\rangle. \tag{3} \]Chebyshev propagation achieves this by approximating the operator exponential by a polynomial series in $\hat{H}$ (after rescaling), and evaluating the series using a stable three-term recurrence that requires only repeated matrix–vector multiplications.
1.3 Layout
We proceed in the following connected steps:
- Define Chebyshev polynomials $T_n(x)$, prove boundedness on $[-1,1]$, and derive their recurrence.
- Explain why the Hamiltonian must be rescaled so its spectrum lies in $[-1,1]$.
- Derive the scalar Chebyshev expansion of $e^{-i\tau x}$ for $x\in[-1,1]$: \[ e^{-i\tau x} = J_0(\tau) + 2\sum_{n\ge 1}(-i)^n J_n(\tau) T_n(x). \]
- Lift the scalar identity to an operator identity $x\mapsto \hat{H}'$.
- Derive the Chebyshev propagation algorithm (vector recurrence).
- Derive a truncation error bound and explain why $J_n(\tau)$ becomes small for $n\gtrsim \tau$.
- Work through explicit $2\times 2$ examples to demonstrate how the propagator is used.
2. Chebyshev polynomials: definition, properties, and recurrence
2.1: The cosine parametrization of $[-1,1]$
A key observation is that any $x\in[-1,1]$ can be written as
\[ x = \cos\theta,\qquad \theta\in[0,\pi]. \tag{4} \]2.2: Definition of Chebyshev polynomials
Definition. The Chebyshev polynomial of the first kind is defined by
\[ T_n(x)\equiv \cos(n\theta)\quad\text{where } x=\cos\theta. \tag{5} \]This definition implies $T_n(x)$ is a polynomial in $x$ (one can prove this using trig identities).
2.3: First few polynomials
Using $\cos(2\theta)=2\cos^2\theta-1$ and $\cos(3\theta)=4\cos^3\theta-3\cos\theta$:
\[ T_0(x)=1, \tag{6} \] \[ T_1(x)=x, \tag{7} \] \[ T_2(x)=2x^2-1, \tag{8} \] \[ T_3(x)=4x^3-3x. \tag{9} \]2.4: Boundedness on $[-1,1]$
From the definition, for $x=\cos\theta\in[-1,1]$:
\[ |T_n(x)| = |\cos(n\theta)| \le 1. \tag{10} \]This boundedness is crucial for stability: the polynomials do not blow up on $[-1,1]$.
2.5: The three-term recursion
Start from the cosine identity
\[ \cos\big((n+1)\theta\big)=2\cos\theta\,\cos(n\theta)-\cos\big((n-1)\theta\big). \tag{11} \]Substitute $\cos\theta=x$, $\cos(n\theta)=T_n(x)$, $\cos((n-1)\theta)=T_{n-1}(x)$:
\[ T_{n+1}(x)=2x\,T_n(x)-T_{n-1}(x). \tag{12} \]3. Why we rescale the Hamiltonian to $[-1,1]$
3.1: Eigenvalues determine operator functions
Let $\hat{H}$ be Hermitian. It has an orthonormal eigenbasis $\{|E_k\rangle\}$ with real eigenvalues $\{E_k\}$:
\[ \hat{H}|E_k\rangle = E_k|E_k\rangle,\qquad E_k\in\mathbb{R}. \tag{13} \]The propagator acts on eigenstates as
\[ e^{-i\hat{H}t}|E_k\rangle = e^{-iE_k t}|E_k\rangle. \tag{14} \]So approximating $e^{-i\hat{H}t}$ reduces to approximating $e^{-iEt}$ over the spectrum.
3.2: Why Chebyshev polynomials demand $x\in[-1,1]$
Chebyshev polynomials are bounded on $[-1,1]$ by (10). Outside that interval, $T_n(x)$ grows rapidly with $n$ (in fact exponentially). Thus, for stability of $T_n(\hat{H}')$ at large $n$, we want $\mathrm{spec}(\hat{H}')\subset[-1,1]$.
3.3: Rescaling the spectrum
Assume bounds $E_{\min}\le E_k\le E_{\max}$ for all eigenvalues:
\[ E_{\min}\le E_k \le E_{\max}. \tag{15} \]Define
\[ a=\frac{E_{\max}+E_{\min}}{2},\qquad b=\frac{E_{\max}-E_{\min}}{2}>0, \tag{16} \]and the shifted/rescaled Hamiltonian
\[ \hat{H}'=\frac{\hat{H}-a\hat{I}}{b}. \tag{17} \]If $\hat{H}|E_k\rangle=E_k|E_k\rangle$, then
\[ \hat{H}'|E_k\rangle=\frac{E_k-a}{b}|E_k\rangle \equiv E_k'|E_k\rangle. \tag{18} \]Check endpoints: $E_{\max}\mapsto +1$ and $E_{\min}\mapsto -1$, hence
\[ E_k'\in[-1,1]. \tag{19} \]3.4: Factorizing the propagator
Rewrite $\hat{H}=a\hat{I}+b\hat{H}'$. Then
\[ e^{-i\hat{H}t}=e^{-i(a\hat{I}+b\hat{H}')t}. \tag{20} \]Since $\hat{I}$ commutes with $\hat{H}'$, we can factor:
\[ e^{-i\hat{H}t}=e^{-iat}\,e^{-i(bt)\hat{H}'}. \tag{21} \]Define the scaled time
\[ \tau\equiv bt. \tag{22} \]Now the numerical problem is computing $e^{-i\tau \hat{H}'}$ with spectrum inside $[-1,1]$.
4. Scalar Chebyshev expansion of $e^{-i\tau x}$ on $[-1,1]$
We derive the key identity (for $x\in[-1,1]$):
\[ e^{-i\tau x} = J_0(\tau) + 2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\,T_n(x). \tag{23} \]4.1: Change variables $x=\cos\theta$
Write $x=\cos\theta$ with $\theta\in[0,\pi]$. Then
\[ e^{-i\tau x}=e^{-i\tau\cos\theta}. \tag{24} \]4.2: Why the Fourier expansion has only cosines (no sines)
Extend $g(\theta)=e^{-i\tau\cos\theta}$ to $[-\pi,\pi]$. Since $\cos(-\theta)=\cos\theta$,
\[ g(-\theta)=e^{-i\tau\cos(-\theta)}=e^{-i\tau\cos\theta}=g(\theta), \tag{25} \]so $g$ is even. Even functions have Fourier series containing only cosines.
Integral proof. The sine coefficient over a symmetric interval is
\[ b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}g(\theta)\sin(n\theta)\,d\theta. \tag{26} \]Here $g$ is even and $\sin(n\theta)$ is odd, so the integrand is odd and the integral vanishes: $b_n=0$.
Therefore we expand as a cosine series:
\[ e^{-i\tau\cos\theta}=a_0(\tau) + 2\sum_{n=1}^{\infty} a_n(\tau)\cos(n\theta). \tag{27} \]4.3: Compute the cosine coefficients by orthogonality
On $[0,\pi]$, cosines satisfy:
\[ \int_{0}^{\pi}\cos(n\theta)\cos(m\theta)\,d\theta= \begin{cases} 0,& n\ne m,\\[0.2em] \dfrac{\pi}{2},& n=m\ge 1,\\[0.4em] \pi,& n=m=0. \end{cases} \tag{28} \]Multiply (27) by $\cos(m\theta)$ and integrate from $0$ to $\pi$.
Case $m=0$.
\[ \int_{0}^{\pi} e^{-i\tau\cos\theta}\,d\theta = a_0(\tau)\int_{0}^{\pi}1\,d\theta + 2\sum_{n=1}^{\infty}a_n(\tau)\int_{0}^{\pi}\cos(n\theta)\,d\theta. \tag{29} \]But $\int_{0}^{\pi}\cos(n\theta)\,d\theta=0$ for $n\ge 1$, so
\[ a_0(\tau)=\frac{1}{\pi}\int_{0}^{\pi} e^{-i\tau\cos\theta}\,d\theta. \tag{30} \]Case $m\ge 1$.
\[ \int_{0}^{\pi} e^{-i\tau\cos\theta}\cos(m\theta)\,d\theta = a_0(\tau)\int_{0}^{\pi}\cos(m\theta)\,d\theta + 2\sum_{n=1}^{\infty}a_n(\tau)\int_{0}^{\pi}\cos(n\theta)\cos(m\theta)\,d\theta. \tag{31} \]The first term vanishes for $m\ge 1$, and orthogonality leaves only $n=m$:
\[ \int_{0}^{\pi} e^{-i\tau\cos\theta}\cos(m\theta)\,d\theta = 2a_m(\tau)\cdot\frac{\pi}{2} = a_m(\tau)\pi. \tag{32} \]Hence
\[ a_m(\tau)=\frac{1}{\pi}\int_{0}^{\pi} e^{-i\tau\cos\theta}\cos(m\theta)\,d\theta,\qquad m\ge 1. \tag{33} \]4.4: Define Bessel functions using these integrals
Define the Bessel function (first kind) using the standard integral representation
\[ J_n(\tau)\equiv \frac{1}{\pi}\int_{0}^{\pi}\cos\!\big(n\theta-\tau\sin\theta\big)\,d\theta. \tag{34} \]A closely related standard identity gives
\[ \frac{1}{\pi}\int_{0}^{\pi} e^{-i\tau\cos\theta}\cos(n\theta)\,d\theta = (-i)^n J_n(\tau). \tag{35} \]Combining (33) and (35):
\[ a_n(\tau)=(-i)^n J_n(\tau). \tag{36} \]Substitute into (27):
\[ e^{-i\tau\cos\theta} = J_0(\tau) + 2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\cos(n\theta). \tag{37} \]4.5: Convert cosines to Chebyshev polynomials
Since $x=\cos\theta$ and by definition $T_n(x)=\cos(n\theta)$:
\[ \cos(n\theta)=T_n(\cos\theta)=T_n(x). \tag{38} \]Thus (37) becomes
\[ e^{-i\tau x} = J_0(\tau) + 2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\,T_n(x),\qquad x\in[-1,1]. \tag{39} \]5. Lifting the scalar identity to an operator identity
5.1: Eigen-decomposition of $\hat{H}'$
Since $\hat{H}'$ is Hermitian, it has eigenpairs $\{E_k',|E_k\rangle\}$ with $E_k'\in[-1,1]$:
\[ \hat{H}'|E_k\rangle = E_k'|E_k\rangle. \tag{40} \]Completeness:
\[ \hat{I} = \sum_k |E_k\rangle\langle E_k|. \tag{41} \]5.2: Action of $e^{-i\tau\hat{H}'}$ on eigenstates
\[ e^{-i\tau\hat{H}'}|E_k\rangle = e^{-i\tau E_k'}|E_k\rangle. \tag{42} \]5.3: Apply the scalar identity to each eigenvalue
Since $E_k'\in[-1,1]$, apply (39) with $x=E_k'$:
\[ e^{-i\tau E_k'} = J_0(\tau)+2\sum_{n=1}^{\infty}(-i)^n J_n(\tau) T_n(E_k'). \tag{43} \]Insert into (42):
\[ e^{-i\tau\hat{H}'}|E_k\rangle = \left[ J_0(\tau)+2\sum_{n=1}^{\infty}(-i)^n J_n(\tau) T_n(E_k') \right]|E_k\rangle. \tag{44} \]5.4: Define $T_n(\hat{H}')$ via spectral calculus
Define the operator polynomial
\[ T_n(\hat{H}') \equiv \sum_k T_n(E_k')\,|E_k\rangle\langle E_k|. \tag{45} \]Then
\[ T_n(\hat{H}')|E_k\rangle = T_n(E_k')|E_k\rangle. \tag{46} \]So (44) can be rewritten as
\[ e^{-i\tau\hat{H}'}|E_k\rangle = \left[ J_0(\tau)\hat{I}+2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\,T_n(\hat{H}') \right]|E_k\rangle. \tag{47} \]Since the eigenstates form a basis, the operator identity follows:
\[ e^{-i\tau\hat{H}'} = J_0(\tau)\hat{I}+2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\,T_n(\hat{H}'). \tag{48} \]Finally, restore the original Hamiltonian using (21) and $\tau=bt$:
\[ e^{-i\hat{H}t} = e^{-iat}\left[ J_0(bt)\hat{I}+2\sum_{n=1}^{\infty}(-i)^n J_n(bt)\,T_n(\hat{H}') \right]. \tag{49} \]6. Chebyshev propagation algorithm (vector recurrence)
6.1: Apply the expansion to $|\psi(0)\rangle$
Define
\[ |\psi(t)\rangle = e^{-i\hat{H}t}|\psi(0)\rangle. \tag{50} \]Using (49):
\[ |\psi(t)\rangle = e^{-iat}\left[ J_0(\tau)|\psi(0)\rangle + 2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\,T_n(\hat{H}')|\psi(0)\rangle \right],\qquad \tau=bt. \tag{51} \]6.2: Define Chebyshev vectors
Define
\[ |\phi_n\rangle \equiv T_n(\hat{H}')|\psi(0)\rangle. \tag{52} \]Then
\[ |\psi(t)\rangle = e^{-iat}\left[ J_0(\tau)|\phi_0\rangle + 2\sum_{n=1}^{\infty}(-i)^n J_n(\tau)\,|\phi_n\rangle \right]. \tag{53} \]6.3: Initialize $|\phi_0\rangle$, $|\phi_1\rangle$
Since $T_0(x)=1$ and $T_1(x)=x$:
\[ |\phi_0\rangle = |\psi(0)\rangle, \tag{54} \] \[ |\phi_1\rangle = \hat{H}'|\psi(0)\rangle. \tag{55} \]6.4: Derive the recurrence for $|\phi_n\rangle$
Use the polynomial recurrence (12) with $x\mapsto \hat{H}'$:
\[ T_{n+1}(\hat{H}') = 2\hat{H}'T_n(\hat{H}') - T_{n-1}(\hat{H}'). \tag{56} \]Apply to $|\psi(0)\rangle$:
\[ |\phi_{n+1}\rangle = 2\hat{H}'|\phi_n\rangle - |\phi_{n-1}\rangle. \tag{60} \](Equations (57)–(59) in the PDF are the intermediate steps leading to this final recurrence.)
6.5: Truncation and practical computation
Truncate the infinite series at order $N$:
\[ |\psi(t)\rangle \approx e^{-iat}\left[ J_0(\tau)|\phi_0\rangle + 2\sum_{n=1}^{N}(-i)^n J_n(\tau)\,|\phi_n\rangle \right]. \tag{61} \]Generate $|\phi_n\rangle$ for $n=0,1,\dots,N$ using the recurrence. Each step requires one matrix–vector multiplication $\hat{H}'|\phi_n\rangle$ plus vector additions.
7. Truncation error and why $J_n(\tau)$ gets small for $n\gtrsim\tau$
7.1: Define the remainder operator
Let
\[ \hat{U}'(\tau)\equiv e^{-i\tau\hat{H}'}. \tag{62} \]Define the truncated approximation
\[ \hat{U}'_N(\tau) \equiv J_0(\tau)\hat{I} + 2\sum_{n=1}^{N}(-i)^n J_n(\tau)\,T_n(\hat{H}'). \tag{63} \]The remainder is
\[ \hat{R}_N(\tau)\equiv \hat{U}'(\tau)-\hat{U}'_N(\tau) = 2\sum_{n=N+1}^{\infty}(-i)^n J_n(\tau)\,T_n(\hat{H}'). \tag{64} \]7.2: Prove $\|T_n(\hat{H}')\|\le 1$
In the eigenbasis of $\hat{H}'$, the eigenvalues of $T_n(\hat{H}')$ are $T_n(E_k')$. Since $E_k'\in[-1,1]$, boundedness gives $|T_n(E_k')|\le 1$. Therefore
\[ \|T_n(\hat{H}')\|\le 1. \tag{65} \]7.3: Derive the error bound
Take norms in (64) and apply triangle inequality:
\[ \|\hat{R}_N(\tau)\| \le 2\sum_{n=N+1}^{\infty}|J_n(\tau)|\,\|T_n(\hat{H}')\| \tag{66} \] \[ \le 2\sum_{n=N+1}^{\infty}|J_n(\tau)|. \tag{67} \]Thus
\[ \|\hat{U}'(\tau)-\hat{U}'_N(\tau)\| \le 2\sum_{n=N+1}^{\infty}|J_n(\tau)|. \tag{68} \]Applying to a normalized state $\||\psi(0)\rangle\|=1$:
\[ \||\psi_{\mathrm{exact}}(t)\rangle-|\psi_N(t)\rangle\| \le 2\sum_{n=N+1}^{\infty}|J_n(\tau)|. \tag{69} \]7.4: Why the Bessel tail becomes small (intuition)
Recall $(-i)^nJ_n(\tau)$ appears as a Fourier coefficient of $e^{-i\tau\cos\theta}$:
\[ (-i)^n J_n(\tau) = \frac{1}{\pi}\int_{0}^{\pi} e^{-i\tau\cos\theta}\cos(n\theta)\,d\theta. \tag{70} \]For large $n$, $\cos(n\theta)$ oscillates rapidly, producing cancellations. Consider the oscillatory phase
\[ \Phi(\theta)=\tau\cos\theta - n\theta. \tag{71} \]When $n\gg\tau$, the $-n\theta$ term dominates the $\theta$-variation, so $\Phi(\theta)$ changes rapidly and cancellations are strong. Hence $J_n(\tau)$ becomes small for $n\gtrsim\tau$.
A practical rule is
\[ N \approx \tau + (\text{a modest safety margin}),\qquad \tau=bt. \tag{72} \]8. Example 1: $\hat{H}=\hat{\sigma}_x$ (no rescaling needed)
Let
\[ \hat{H}= \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \qquad |\psi(0)\rangle= \begin{pmatrix} 1\\ 0 \end{pmatrix}. \tag{73} \]Eigenvalues are $\pm 1$, so $E_{\min}=-1$, $E_{\max}=1$. Then $a=0$, $b=1$, $\hat{H}'=\hat{H}$, and $\tau=t$.
8.1 Compute Chebyshev vectors explicitly
\[ |\phi_0\rangle = |\psi(0)\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}. \tag{74} \] \[ |\phi_1\rangle = \hat{H}'|\psi(0)\rangle = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix}. \tag{75} \]Use $|\phi_{n+1}\rangle=2\hat{H}'|\phi_n\rangle-|\phi_{n-1}\rangle$. Compute $\hat{H}'|\phi_1\rangle$:
\[ \hat{H}'|\phi_1\rangle = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix}. \]Then
\[ |\phi_2\rangle = 2\hat{H}'|\phi_1\rangle - |\phi_0\rangle = 2\begin{pmatrix} 1\\ 0 \end{pmatrix} - \begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} = |\phi_0\rangle. \tag{76} \]Similarly $|\phi_3\rangle=|\phi_1\rangle$, etc., so
\[ |\phi_{2m}\rangle= \begin{pmatrix} 1\\ 0 \end{pmatrix}, \qquad |\phi_{2m+1}\rangle= \begin{pmatrix} 0\\ 1 \end{pmatrix}. \tag{77} \]8.2 Assemble the series (even/odd separation)
From (61) with $a=0$ and $\tau=t$:
\[ |\psi(t)\rangle \approx J_0(t)|\phi_0\rangle + 2\sum_{n=1}^{N}(-i)^n J_n(t)\,|\phi_n\rangle. \tag{78} \]Separating even and odd $n$ gives (as in the PDF):
\[ |\psi(t)\rangle \approx \left(J_0(t)+2\sum_{m\ge 1}(-1)^m J_{2m}(t)\right)|\phi_0\rangle - i\left(2\sum_{m\ge 0}(-1)^m J_{2m+1}(t)\right)|\phi_1\rangle. \tag{80} \]In the infinite limit these sums equal $\cos t$ and $\sin t$, giving the exact result
\[ |\psi(t)\rangle = \begin{pmatrix} \cos t\\ -i\sin t \end{pmatrix}. \tag{81} \]9. Example 2: a nontrivial rescaling example
Let
\[ \hat{H}= \begin{pmatrix} 2 & 1\\ 1 & 4 \end{pmatrix}, \qquad |\psi(0)\rangle= \begin{pmatrix} 1\\ 0 \end{pmatrix}. \tag{82} \]9.1: Compute eigenvalues exactly
Characteristic polynomial:
\[ \det(\hat{H}-\lambda\hat{I})= \begin{vmatrix} 2-\lambda & 1\\ 1 & 4-\lambda \end{vmatrix} = (2-\lambda)(4-\lambda)-1. \tag{83} \] \[ = \lambda^2 - 6\lambda + 7. \tag{84} \]Solve $\lambda^2-6\lambda+7=0$:
\[ \lambda_{\pm}=\frac{6\pm\sqrt{36-28}}{2} = 3\pm\sqrt{2}. \tag{85} \]Thus $E_{\max}=3+\sqrt{2}$, $E_{\min}=3-\sqrt{2}$.
9.2: Compute $a$, $b$ and $\hat{H}'$
\[ a=\frac{E_{\max}+E_{\min}}{2}=3,\qquad b=\frac{E_{\max}-E_{\min}}{2}=\sqrt{2}. \tag{86} \] \[ \hat{H}'=\frac{\hat{H}-a\hat{I}}{b} = \frac{1}{\sqrt{2}} \left[ \begin{pmatrix} 2 & 1\\ 1 & 4 \end{pmatrix} - 3\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \right] = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix}. \tag{87} \]Scaled time is $\tau=bt=\sqrt{2}\,t$, and
\[ e^{-i\hat{H}t}=e^{-i3t}\,e^{-i\tau\hat{H}'}. \tag{88} \]9.3: Compute Chebyshev vectors explicitly
\[ |\phi_0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}. \tag{89} \] \[ |\phi_1\rangle=\hat{H}'|\phi_0\rangle= \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\ 1 \end{pmatrix}. \tag{90} \]Now compute $\hat{H}'|\phi_1\rangle$ carefully:
\[ \hat{H}'|\phi_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (-1)(-1) + 1\cdot 1\\ 1\cdot(-1) + 1\cdot 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} = |\phi_0\rangle. \tag{92} \]Then the recurrence gives
\[ |\phi_2\rangle = 2\hat{H}'|\phi_1\rangle - |\phi_0\rangle = 2|\phi_0\rangle-|\phi_0\rangle = |\phi_0\rangle. \tag{93} \]Similarly one obtains the same even/odd pattern:
\[ |\phi_{2m}\rangle = |\phi_0\rangle,\qquad |\phi_{2m+1}\rangle = |\phi_1\rangle. \tag{94} \]9.4: Assemble the propagated state
\[ |\psi(t)\rangle \approx e^{-i3t}\left[ J_0(\tau)|\phi_0\rangle + 2\sum_{n=1}^{N}(-i)^n J_n(\tau)|\phi_n\rangle \right],\qquad \tau=\sqrt{2}\,t. \tag{95} \]Separating even/odd terms yields a two-vector form:
\[ |\psi(t)\rangle \approx e^{-i3t}\Big[A_N(\tau)|\phi_0\rangle + B_N(\tau)|\phi_1\rangle\Big], \tag{96} \] \[ A_N(\tau)\equiv J_0(\tau) + 2\sum_{m=1}^{\lfloor N/2\rfloor}(-1)^m J_{2m}(\tau), \tag{97} \] \[ B_N(\tau)\equiv -2i\sum_{m=0}^{\lfloor (N-1)/2\rfloor}(-1)^m J_{2m+1}(\tau). \tag{98} \]In the limit $N\to\infty$, $A_N(\tau)\to\cos\tau$ and $B_N(\tau)\to -i\sin\tau$, so
\[ |\psi(t)\rangle = e^{-i3t}\left[\cos(\sqrt{2}\,t)\,|\phi_0\rangle - i\sin(\sqrt{2}\,t)\,|\phi_1\rangle\right]. \tag{99} \]10. Summary: the complete Chebyshev propagator
Given $\hat{H}$ and $|\psi(0)\rangle$:
- Choose bounds $E_{\min},E_{\max}$ and compute \[ a=\frac{E_{\max}+E_{\min}}{2},\quad b=\frac{E_{\max}-E_{\min}}{2},\quad \hat{H}'=\frac{\hat{H}-a\hat{I}}{b},\quad \tau=bt. \]
- Generate Chebyshev vectors: \[ |\phi_0\rangle=|\psi(0)\rangle,\quad |\phi_1\rangle=\hat{H}'|\phi_0\rangle,\quad |\phi_{n+1}\rangle=2\hat{H}'|\phi_n\rangle-|\phi_{n-1}\rangle. \]
- Assemble: \[ |\psi(t)\rangle \approx e^{-iat}\left[J_0(\tau)|\phi_0\rangle + 2\sum_{n=1}^{N}(-i)^n J_n(\tau)|\phi_n\rangle\right]. \]
- Choose $N$ so that the tail $2\sum_{n>N}|J_n(\tau)|$ is below tolerance.