Polaron transform of the Frenkel exciton model
These notes follow the explicit term-by-term polaron transformation of a Frenkel exciton Hamiltonian with site-local harmonic baths. The goal is to remove the linear system–bath coupling by shifting the bath coordinates, and to obtain the polaron-transformed Hamiltonian where the diagonal system energies are bare and the off-diagonal excitonic couplings are dressed by bath momentum operators.
1. Frenkel exciton model
Consider a Frenkel exciton model with $n$ exciton sites, each coupled to a local harmonic bath. The full Hamiltonian is
\[ \hat{H} = \sum_n \left( \varepsilon_n + \sum_\nu \frac{g_{n,\nu}^2}{2 \omega_{n,\nu}^2} \right) \lvert n\rangle\langle n\rvert + \sum_n \sum_{m\neq n} \Delta_{n,m} \left( \lvert n\rangle\langle m\rvert + \lvert m\rangle\langle n\rvert \right) \]
\[ \quad + \sum_{n,\nu} \frac{1}{2} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big) - \sum_{n,\nu} g_{n,\nu} \hat{R}_{n,\nu} \lvert n\rangle\langle n\rvert. \tag{1} \]
We identify:
- $\varepsilon_n$ – the (renormalized) energy of site $n$;
- $\Delta_{n,m}$ – electronic coupling between sites $n$ and $m$;
- $\hat{R}_{n,\nu}$, $\hat{P}_{n,\nu}$ – position and momentum of the $\nu$th bath mode on site $n$;
- $\omega_{n,\nu}$ – bath mode frequency;
- $g_{n,\nu}$ – linear system–bath coupling constant.
The bath and system–bath parts are
\[ \hat{H}_b = \sum_{n,\nu} \frac{1}{2} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big), \qquad \hat{H}_{sb} = - \sum_{n,\nu} g_{n,\nu} \hat{R}_{n,\nu} \lvert n\rangle\langle n\rvert, \]
and the diagonal system part (including the counterterm) is
\[ \hat{H}_d = \sum_n \left( \varepsilon_n + \sum_\nu \frac{g_{n,\nu}^2}{2 \omega_{n,\nu}^2} \right) \lvert n\rangle\langle n\rvert. \]
The off-diagonal system couplings are
\[ \hat{H}_\text{off} = \sum_n \sum_{m\neq n} \Delta_{n,m} \left( \lvert n\rangle\langle m\rvert + \lvert m\rangle\langle n\rvert \right). \]
2. Polaron transform operator
Since the model corresponds to shifted harmonic oscillators, we introduce a polaron (shift) transformation that moves the bath coordinates back to the origin. We define
\[ \hat{S} = \sum_{k,\mu} M_{k,\mu}\,\hat{P}_{k,\mu}\,\lvert k\rangle\langle k\rvert. \tag{2} \]
For any operator $\hat{O}$, the polaron-transformed operator is
\[ \hat{O}_\mathrm{PT} = e^{\hat{S}} \hat{O} e^{-\hat{S}} = \hat{O} + [\hat{S},\hat{O}] + \frac{1}{2!}[\hat{S},[\hat{S},\hat{O}]] + \cdots. \]
We now apply this expansion to each relevant term in $\hat{H}$.
3. Transform of $\lvert n\rangle\langle n\rvert$
The diagonal projector transforms as
\[ e^{\hat{S}} \lvert n\rangle\langle n\rvert e^{-\hat{S}} = \lvert n\rangle\langle n\rvert + [\hat{S},\lvert n\rangle\langle n\rvert] + \frac{1}{2!} [\hat{S},[\hat{S},\lvert n\rangle\langle n\rvert]] + \cdots. \tag{3} \]
The first commutator is
\[ [\hat{S},\lvert n\rangle\langle n\rvert] = \sum_{k,\mu} M_{k,\mu}\hat{P}_{k,\mu} [\lvert k\rangle\langle k\rvert,\lvert n\rangle\langle n\rvert]. \]
\[ [\lvert k\rangle\langle k\rvert,\lvert n\rangle\langle n\rvert] = \lvert k\rangle\langle k\rvert n\rangle\langle n\rvert - \lvert n\rangle\langle n\rvert k\rangle\langle k\rvert = \lvert k\rangle\langle n\rvert \delta_{k,n} - \lvert n\rangle\langle k\rvert \delta_{k,n}. \]
Hence
\[ [\hat{S},\lvert n\rangle\langle n\rvert] = \sum_\mu \big( M_{n,\mu}\hat{P}_{n,\mu}\lvert n\rangle\langle n\rvert - M_{n,\mu}\hat{P}_{n,\mu}\lvert n\rangle\langle n\rvert \big) = 0. \tag{4} \]
All higher commutators vanish, so
\[ e^{\hat{S}} \lvert n\rangle\langle n\rvert e^{-\hat{S}} = \lvert n\rangle\langle n\rvert. \tag{5} \]
4. Transform of bath operators $\hat{P}_{n,\nu}$ and $\hat{R}_{n,\nu}$
4.1 Momentum operator
\[ e^{\hat{S}} \hat{P}_{n,\nu} e^{-\hat{S}} = \hat{P}_{n,\nu} + [\hat{S},\hat{P}_{n,\nu}] + \frac{1}{2!}[\hat{S},[\hat{S},\hat{P}_{n,\nu}]] + \cdots. \tag{6} \]
\[ [\hat{S},\hat{P}_{n,\nu}] = \sum_{k,\mu} M_{k,\mu} [\hat{P}_{k,\mu}\lvert k\rangle\langle k\rvert,\hat{P}_{n,\nu}] = \sum_{k,\mu} M_{k,\mu} [\hat{P}_{k,\mu},\hat{P}_{n,\nu}] \lvert k\rangle\langle k\rvert = 0, \tag{7} \]
so all higher commutators vanish and
\[ e^{\hat{S}} \hat{P}_{n,\nu} e^{-\hat{S}} = \hat{P}_{n,\nu}. \tag{8} \]
4.2 Position operator
\[ e^{\hat{S}} \hat{R}_{n,\nu} e^{-\hat{S}} = \hat{R}_{n,\nu} + [\hat{S},\hat{R}_{n,\nu}] + \frac{1}{2!}[\hat{S},[\hat{S},\hat{R}_{n,\nu}]] + \cdots. \tag{9} \]
\[ [\hat{S},\hat{R}_{n,\nu}] = \sum_{k,\mu} M_{k,\mu} [\hat{P}_{k,\mu}\lvert k\rangle\langle k\rvert,\hat{R}_{n,\nu}] = \sum_{k,\mu} M_{k,\mu} [\hat{P}_{k,\mu},\hat{R}_{n,\nu}] \lvert k\rangle\langle k\rvert. \]
Using $[\hat{P}_{k,\mu},\hat{R}_{n,\nu}] = -i\,\delta_{k,n}\delta_{\mu,\nu}$, we obtain
\[ [\hat{S},\hat{R}_{n,\nu}] = -i M_{n,\nu} \lvert n\rangle\langle n\rvert. \tag{10} \]
Since the first commutator no longer contains bath operators, all higher-order commutators vanish. Thus
\[ e^{\hat{S}} \hat{R}_{n,\nu} e^{-\hat{S}} = \hat{R}_{n,\nu} - i M_{n,\nu} \lvert n\rangle\langle n\rvert. \tag{11} \]
5. Transform of $\hat{H}_b + \hat{H}_{sb}$ and choice of $M_{n,\nu}$
5.1 Bath Hamiltonian
Using the transformed operators in $\hat{H}_b$, we write
\[ e^{\hat{S}} \hat{H}_b e^{-\hat{S}} = \frac{1}{2} \sum_{n,\nu} e^{\hat{S}} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big) e^{-\hat{S}}. \]
Using $e^{\hat{S}}\hat{P}_{n,\nu}e^{-\hat{S}} = \hat{P}_{n,\nu}$ and $e^{\hat{S}}\hat{R}_{n,\nu}e^{-\hat{S}} = \hat{R}_{n,\nu} - i M_{n,\nu}\lvert n\rangle\langle n\rvert$:
\[ e^{\hat{S}} \hat{H}_b e^{-\hat{S}} = \frac{1}{2} \sum_{n,\nu} \hat{P}_{n,\nu}^2 + \frac{1}{2} \sum_{n,\nu} \omega_{n,\nu}^2 \big( \hat{R}_{n,\nu} - i M_{n,\nu}\lvert n\rangle\langle n\rvert \big)^2. \]
\[ = \frac{1}{2} \sum_{n,\nu} \hat{P}_{n,\nu}^2 + \frac{1}{2} \sum_{n,\nu} \omega_{n,\nu}^2 \big( \hat{R}_{n,\nu}^2 - 2 i M_{n,\nu} \hat{R}_{n,\nu}\lvert n\rangle\langle n\rvert - M_{n,\nu}^2 \lvert n\rangle\langle n\rvert \big). \tag{12} \]
So
\[ e^{\hat{S}} \hat{H}_b e^{-\hat{S}} = \frac{1}{2} \sum_{n,\nu} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big) - i \sum_{n,\nu} \omega_{n,\nu}^2 M_{n,\nu} \hat{R}_{n,\nu} \lvert n\rangle\langle n\rvert \]
\[ \quad - \frac{1}{2} \sum_{n,\nu} \omega_{n,\nu}^2 M_{n,\nu}^2 \lvert n\rangle\langle n\rvert. \]
5.2 System–bath interaction
The system–bath Hamiltonian transforms as
\[ e^{\hat{S}} \hat{H}_{sb} e^{-\hat{S}} = e^{\hat{S}} \left( -\sum_{n,\nu} g_{n,\nu} \hat{R}_{n,\nu} \lvert n\rangle\langle n\rvert \right) e^{-\hat{S}}. \]
Using the previous results,
\[ e^{\hat{S}} \hat{H}_{sb} e^{-\hat{S}} = -\sum_{n,\nu} g_{n,\nu} \big( e^{\hat{S}} \hat{R}_{n,\nu} e^{-\hat{S}} \big) \big( e^{\hat{S}} \lvert n\rangle\langle n\rvert e^{-\hat{S}} \big) \]
\[ = -\sum_{n,\nu} g_{n,\nu} \big( \hat{R}_{n,\nu} - i M_{n,\nu}\lvert n\rangle\langle n\rvert \big) \lvert n\rangle\langle n\rvert \]
\[ = -\sum_{n,\nu} g_{n,\nu}\hat{R}_{n,\nu} \lvert n\rangle\langle n\rvert + i \sum_{n,\nu} g_{n,\nu} M_{n,\nu} \lvert n\rangle\langle n\rvert. \tag{13} \]
5.3 Choosing $M_{n,\nu}$
Combining the transformed $\hat{H}_b$ and $\hat{H}_{sb}$, the coefficient in front of $\hat{R}_{n,\nu}\lvert n\rangle\langle n\rvert$ is
\[ - i \omega_{n,\nu}^2 M_{n,\nu} - g_{n,\nu}. \]
To eliminate the linear system–bath coupling, we choose $M_{n,\nu}$ such that this term vanishes:
\[ - i \omega_{n,\nu}^2 M_{n,\nu} - g_{n,\nu} = 0 \quad\Rightarrow\quad M_{n,\nu} = i\,\frac{g_{n,\nu}}{\omega_{n,\nu}^2}. \tag{15} \]
Using this, and collecting the diagonal terms, we find
\[ e^{\hat{S}}(\hat{H}_b + \hat{H}_{sb}) e^{-\hat{S}} = \frac{1}{2} \sum_{n,\nu} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big) - \sum_{n,\nu} \frac{g_{n,\nu}^2}{2 \omega_{n,\nu}^2} \lvert n\rangle\langle n\rvert. \tag{16} \]
Together with the diagonal system part, the transformed diagonal + bath sector is
\[ e^{\hat{S}}(\hat{H}_d + \hat{H}_b + \hat{H}_{sb}) e^{-\hat{S}} = \sum_n \varepsilon_n \lvert n\rangle\langle n\rvert + \frac{1}{2} \sum_{n,\nu} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big). \tag{18} \]
Thus, after the polaron shift, the diagonal system energies are bare ($\varepsilon_n$) and the bath is a collection of unshifted harmonic oscillators.
6. Transform of $\lvert n\rangle\langle m\rvert$ and the final polaron Hamiltonian
6.1 First commutator
For $n \neq m$, the off-diagonal operator transforms as
\[ e^{\hat{S}} \lvert n\rangle\langle m\rvert e^{-\hat{S}} = \lvert n\rangle\langle m\rvert + [\hat{S},\lvert n\rangle\langle m\rvert] + \frac{1}{2!}[\hat{S},[\hat{S},\lvert n\rangle\langle m\rvert]] + \cdots. \tag{19} \]
The first commutator is
\[ [\hat{S},\lvert n\rangle\langle m\rvert] = \sum_{k,\mu} M_{k,\mu} [\hat{P}_{k,\mu}\lvert k\rangle\langle k\rvert, \lvert n\rangle\langle m\rvert]. \]
\[ = \sum_{k,\mu} M_{k,\mu} \hat{P}_{k,\mu} \left( \lvert k\rangle\langle k\rvert n\rangle\langle m\rvert - \lvert n\rangle\langle m\rvert k\rangle\langle k\rvert \right) \]
\[ = \sum_\mu \big( M_{n,\mu} \hat{P}_{n,\mu} \lvert n\rangle\langle m\rvert - M_{m,\mu} \hat{P}_{m,\mu} \lvert n\rangle\langle m\rvert \big). \tag{21} \]
Hence
\[ [\hat{S},\lvert n\rangle\langle m\rvert] = \sum_\mu \big( M_{n,\mu} \hat{P}_{n,\mu} - M_{m,\mu} \hat{P}_{m,\mu} \big)\, \lvert n\rangle\langle m\rvert. \]
6.2 Second commutator and collective bath momentum
The second commutator can be shown to take the form
\[ [\hat{S},\lvert n\rangle\langle m\rvert]^2 = \left( \sum_\mu \big( M_{n,\mu} \hat{P}_{n,\mu} - M_{m,\mu} \hat{P}_{m,\mu} \big) \right)^2 \lvert n\rangle\langle m\rvert. \tag{30} \]
This suggests introducing collective momentum operators for each site,
\[ \hat{X}_n = \sum_\mu M_{n,\mu} \hat{P}_{n,\mu}. \tag{31} \]
Then
\[ [\hat{S},\lvert n\rangle\langle m\rvert] = (\hat{X}_n - \hat{X}_m) \lvert n\rangle\langle m\rvert, \]
\[ [\hat{S},\lvert n\rangle\langle m\rvert]^2 = (\hat{X}_n - \hat{X}_m)^2 \lvert n\rangle\langle m\rvert, \]
and, by induction, the $k$-th nested commutator yields
\[ [\hat{S},\lvert n\rangle\langle m\rvert]^k = (\hat{X}_n - \hat{X}_m)^k \lvert n\rangle\langle m\rvert. \]
Summing the series, we obtain
\[ e^{\hat{S}} \lvert n\rangle\langle m\rvert e^{-\hat{S}} = \left[ 1 + (\hat{X}_n - \hat{X}_m) + \frac{1}{2!}(\hat{X}_n - \hat{X}_m)^2 + \cdots \right] \lvert n\rangle\langle m\rvert, \]
\[ = e^{\hat{X}_{nm}} \lvert n\rangle\langle m\rvert, \quad \hat{X}_{nm} \equiv \hat{X}_n - \hat{X}_m. \tag{33} \]
6.3 Final polaron-transformed Hamiltonian
Using the results for the diagonal sector, Eq. (18), and for the off-diagonal terms, Eq. (33), in the original Hamiltonian (1), the fully polaron-transformed Hamiltonian is
\[ \hat{H}_\mathrm{PT} = e^{\hat{S}} \hat{H} e^{-\hat{S}} = \sum_n \varepsilon_n \lvert n\rangle\langle n\rvert + \frac{1}{2} \sum_{n,\nu} \big( \hat{P}_{n,\nu}^2 + \omega_{n,\nu}^2 \hat{R}_{n,\nu}^2 \big) \]
\[ \quad + \sum_{n} \sum_{m\neq n} \Delta_{n,m} \left( e^{\hat{X}_{nm}} \lvert n\rangle\langle m\rvert + e^{-\hat{X}_{nm}} \lvert m\rangle\langle n\rvert \right). \tag{34} \]
In this representation, the linear system–bath coupling has been fully removed. The price paid is that the excitonic couplings are now dressed by bath momentum operators through the exponentials $e^{\pm \hat{X}_{nm}}$, which encode the polaronic dressing of exciton hopping between sites $n$ and $m$.